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A Late Jurassic Digging
Mammal and Early

Mammalian Diversification
Zhe-Xi Luo* and John R. Wible

A fossil mammal from the Late Jurassic Morrison Formation, Colorado, has
highly specialized teeth similar to those of xenarthran and tubulidentate
placental mammals and different from the generalized insectivorous or
omnivorous dentitions of other Jurassic mammals. It has many forelimb
features specialized for digging, and its lumbar vertebrae show xenarthrous
articulations. Parsimony analysis suggests that this fossil represents a separate
basal mammalian lineage with some dental and vertebral convergences to
those of modern xenarthran placentals, and reveals a previously unknown
ecomorph of early mammals.

The Late Jurassic was a time of rapid diversi-

fication of mammals. Insectivorous eutricono-

dontans, symmetrodontans, and dryolestoids,

and the omnivorous multituberculates domi-

nated the Late Jurassic mammalian faunas of

Laurasia, displacing several more primitive

mammaliaform lineages (1–3). Most mam-

mals of the Jurassic and Early Cretaceous

with preserved skeletal elements are general-

ized terrestrial mammals (4–7), except doco-

dontans (2). Here, we report a new mammal

with dental specializations like those known

only from early Tertiary palaeanodonts and

extant xenarthran and tubulidentate placental

mammals, in addition to numerous fossorial

(digging) skeletal features.

Fruitafossor windscheffeli gen. et sp. nov.

(8) is represented by relatively complete lower

jaws (Fig. 1), incomplete cranium, and nearly

40% of the postcranial skeleton, including

complete forelimb and manus (Fig. 2), several

elements of the hindlimb and hindfoot (pes)

(Fig. 3), and most of the thoracic, complete

lumbar and sacral, and some caudal vertebrae.

The new taxon is distinguishable from all

known Mesozoic mammaliaforms in having

tubular and single-rooted molars with open-

ended roots (Fig. 1) and in that the molar

crown lacks enamel. It differs from all known

Mesozoic mammaliaforms in that the posteri-

or opening of the mandibular canal is located

anterior to the pterygoid crest in a broad

meckelian groove. It differs from all Jurassic

mammals (except Hadrocodium) (9) in having

an inflected mandibular angle that is contin-

uous with the pterygoid crest (Fig. 1).

Fruitafossor is also distinguishable from and

more primitive than the well-established and

successively more inclusive hierarchies of

eutherians (10, 11), the crown therian clade

of eutherians and metatherians (7, 12, 13), the

trechnotherian clade (Zhangheotherium and

crown therians) (14–17), and the theriiform

clade (multituberculates and trechnotherians)

(18), and is more plesiomorphic (19, 20) than

each of these clades by many characteristics.
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The most prominent feature of Fruitafossor

is its single- and open-rooted tubular molars

with elliptical cross section, which suggests

that the molars had a sustained and continu-

ous growth in life and are similar to the teeth

of extant armadillos (dasypodids), which feed

primarily on insects and small invertebrates,

supplemented with plants (21). We thus infer

that Fruitafossor had a similar diet. Tubular

molars of Fruitafossor also bear some resem-

blance to the living aardvark (Orycteropus) that

is specialized for feeding on ants and termites,

although some aardvark teeth are bilobed.

Among early Tertiary mammals, palaeanodonts

also developed similar (although fewer) single-

rooted cheek teeth with elliptical cross section.

Fruitafossor was a fossorial mammal, with

forelimb and manual structures for scratch

digging (22, 23) (Fig. 2). The scapular glenoid

is saddle-shaped and formed by both the sca-

pula and a separate coracoid. This suggests

that the range of mobility of the shoulder

joint was similar to that of monotremes, rather

than that of moles. The large infraspinous fossa

occupies much of the lateral aspect of the sca-

pula, and the incipient supraspinous fossa is

represented by a small area on the cranial bor-

der of the scapula. The acromion is platelike

and forms a rigid articulation with the clavicle.

The scapula is similar to those of monotremes

(Fig. 3), Morganucodon, and Haldanodon in

most characteristics. The humerus (Fig. 2) has

a large deltopectoral crest and a hypertrophied

tuberosity for the insertion of a large teres

muscle that also has an extensive area of ori-

gination from the prominent posteroventral

angle of the scapula. The distal portion of the

humerus is very wide with well-developed epi-

condyles. The ectepicondyle has a hypertro-

phied supinator/extensor crest typical of small

digging mammals (22, 23). The ratio of epi-

condylar width to humeral length is about 65%,

above the average of all extant fossorial mam-

mals in this index (22). The ulna has an elon-

gate and medially pointed olecranon process,

presumably for very large triceps, dorsoepitro-

chlearis, and digital flexor muscles. The ole-

cranon length is 66% that of the ulnar portion

anterior to the semilunar notch, also above the

average of all extant fossorial mammals (22).

The manus has only four digits. The carpals

are all proximo-distally shortened, as are

metacarpals 2 to 4 and phalanges of digits 2

to 4. The proximal phalanges of digits 2 and 3

are the shortest. However, metacarpal 1 and

digit 1 phalanges are more gracile than the

short and blocklike metacarpals and phalanges

of digits 2, 3, and 4. The terminal (claw-

bearing) phalanx is the longest on each digit; it

has a large flexor tubercle. The distal portion

of the terminal phalanx is dorso-ventrally flat,

broad, and nearly spatulate, although its apex

is not bifid. A very large sesamoid bone for

the digital flexor muscle is present on the

plantar aspect of the manus, and a single

sesamoid is also present ventral to the metacarpo-

phalangeal joint (Fig. 2). Shortened and robust

metacarpals and phalanges, the proportion of

phalanges within the digit (22), and the main

features of the terminal phalanx (24) are all

typical of fossorial mammals.

Fig. 1. Fruitafossor
windsheffeli gen et
sp. nov. (Holotype:
LACM 150948): Re-
construction of left
mandible and lower
dentition (i3, c1, p3,
m3) in (A) lateral and
(B) medial views. (C)
Tubular lower molar
(m1) in medial view
with open root-end ex-
posed in the broken
mandible [tubular struc-
ture of the molar is also
corroborated by com-
puterized tomography
(CT) scans]. Abbrevia-
tions: ap, inflected angular process; co, facet for coronoid bone; cp, coronoid process; dc, dentary condyle;
mc, posterior opening of mandibular canal; mf, anterior mental foramina; mg, meckelian groove; ms,
masseteric fossa; pf, pterygoid fossa; sym, mandibular symphysis.

Fig. 2. (A) Restoration of Fruitafossor windscheffeli (Holotype: LACM 150948) as a fossorial
mammal with forelimb and manual features for scratch digging and a dentition specialized for
feeding on termites, other insects, and supplemented with plants (shaded parts of the skeleton are
preserved in the type specimen); (B) left scapula in ventrolateral (tilted ‘‘posterolateral’’) view;
(C to F) left humerus in ventral (‘‘anterior’’), dorsal (‘‘posterior’’), distal, and anteromedial views; (G)
posteromedial view of left radius; (H) anterior view of left ulna; (I) plantar (ventral) view of left
manus; and (J) lateral view of metacarpal and phalanges of digit 3.
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However, many manual and digital features

are also unique to Fruitafossor. The new taxon

is distinctive from monotremes in the width-

length proportion of metacarpal 1, which has

nearly the same broad width as that of other

metacarpals. Its short and broad metacarpals

and phalanges differ from the gracile metacar-

pals and phalanges of eutriconodonts (7, 25),

multituberculates (26, 27), and trechnotherians

(5, 28–30), which have less specialized terres-

trial and other locomotory adaptations. The ab-

sence of a bifid claw differs from many (but

not all) Cenozoic and extant placental mam-

mals with digging adaptations (22, 23).

Fruitafossor is characterized by a mixture of

many plesiomorphies of premammalian mam-

maliaforms, a large number of eutriconodontan-

like and monotreme-like features that are

typical of basal mammals, and some derived

features of tubulidentate and xenarthran pla-

centals. Most of the scapular features are

plesiomorphic and similar to those of

morganucodontids, Haldanodon, and living

monotremes (Fig. 3). The humerus lacks a

distinctive humeral head but has a broad

intertubercular groove; the two distal humeral

condyles for the radius and ulna are spherical,

widely separated, and arranged obliquely. In

these features of the humerus, F. windscheffeli

is similar to tritylodontids (31), tritheledontids

(32), and morganuocodontids (4).

Fruitafossor shares plesiomorphic carpal

features with eutriconodontans, multitubercu-

lates, and Zhangheotherium in the proportion of

the hamate, lunate, and scaphoid, and lacks the

derived features of the hypertrophied hamate

R E P O R T S

Fig. 3. Comparison of Fruitafossor with other
mammals and premammalian cynodonts. (Top)
Right scapulae of (A) monotreme Ornithorhynchus
(platypus, lateral and anterior views); (B) basal
mammal Fruitafossor (ventrolateral view); (C) eutri-
conodontan Jeholodens (lateral view); (D) marsupial
Didelphis (opossum, lateral view); (E) placental
Orycteropus (aardvark, lateral view); (F) placental
Bradypus (sloth, ventral or plantar view); and (G)
placental Myrmecophaga (giant anteater, lateral
view). Abbreviations: ac, acromion process; co, cora-
coid bone; cop; coracoid process (reduced coracoid
bone fused to scapula); gl, scapular glenoid joint
surface; isf, infraspinous fossa; sbs, subscapular
spine; sp, scapular spine; ssf, supraspinous fossa.
(Middle) Calcanei (right, all in ventral view) of (H)
the Manda cynodont; (I) mammaliamorph Oligo-
kyphus; (J) mammaliaform Morganucodon; (K)
Fruitafossor; (L) eutriconodontan Jeholodens; (M) a
Late Cretaceous multituberculate; (N) trechnothe-
rian Zhangheotherium; and (O) placental Dasypus
(armadillo). [(H), (I), and (J) are redrawn from (12).]
(Bottom) (P) Lumbars, mobile lumbar ribs, and
sacral region of Fruitafossor. (Q) Lumbar vertebrae
of placental Tamandua [after (34)]. Abbreviations:
asf, astragalar facet; asp, astraglar process (as-
tragalar facet is on the dorso-medial aspect of
this process); alz/plz, lateral zygapophyseal ver-
tebral articulation (derived xenarthran condition);
az, prezygapophysis; az/pz, primitive mammalian
zygapophyseal articulation; cf, calcaneocuboid facet;
ct, calcaneal tuber; isc, ilio-sacral contact; pp,
peroneal process; psf, peroneal shelf; stf, vertically
oriented sustentacular facet; stp, sustentacular pro-
cess (the horizontally oriented sustentacular facet is
on the dorsal aspect of this process). Node (1) Crown
Mammalia; Node (2) clade defined by common
ancestor of Fruitafossor and crown Theria; Node (3)
clade defined by ancestor of Jeholodens and crown
Theria: enlargement of supraspinous fossa; acromial
process extending beyond the glenoid; glenoid
uniformly concave (not saddle-shaped); Node (4)
Theriiformes, with synapomorphies of distinctive pero-
neal process (instead of a broad peroneal shelf),
elongation of calcaneal tuber; Node (5) Trechnotherians;
Node (6) Crown Theria with synapomorphies of
shelflike sustentacular structure and a partial dorsal
placement of sustentacular facet (instead of a medial
placement); Node (7) Crown placental synapomorphy:
loss of peroneal process or shelf; Node (8) Xenarthra:
coracoid process fused with cranial border of scapula.
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of metatherians or the enlarged trapezium of

eutherians (7, 11, 12). The exposed portion of

the scapula is similar to that of docodontans

(2). Its calcaneus, although autapomorphic in

some regards, bears strong similarities to those

of Morganucodon and tritylodontids (4, 12)

and is far more primitive than the calcanei of

multituberculates (26, 27), Zhangheotherium

(29), metatherians, and eutherians (7, 11)

(Fig. 3). Its lumbar vertebrae bear unfused and

mobile lumbar ribs down to the penultimate

lumbar vertebra (Fig. 3P), a feature of cyno-

donts (31) and monotremes.

Fruitafossor is similar to eutriconodontans

and some spalacotheriid symmetrodontans in

the rounded posteroventral margin of the man-

dible that is continuous with the dentary con-

dyle (Fig. 1). The medial side of the mandible

has a distinctive pterygoid fossa, a plesiomor-

phic feature of many other Late Jurassic mam-

mals. However, the mandible has an anteriorly

placed and inflected angle. The posterior open-

ing of the mandibular canal is placed in a very

broad meckelian groove, and anterior to the

pterygoid fossa. These features are not known

for any Jurassic and Cretaceous mammals

and are autapomorphic for this new mam-

malian lineage.

Fruitafossor is similar to tubulidentates

(aardvark) and armadillos (dasypodids) in its

tubular molars, each with a single and open

root (Fig. 1). Its lumbar vertebrae have a lateral

anterior- and posterior-zygapophyseal articula-

tion, in addition to the typical pre- and postzy-

gapophyseal intervertebral articulations of most

mammals (Fig. 3, P and Q). These are similar to

the xenarthrous thoracic and lumbar vertebrae

that are otherwise unique features for the pla-

cental order of Xenarthra (sloths, anteaters, and

armadillos) (33, 34). Given that Fruitafossor is

not closely related to xenarthrans (Fig. 4), it

must have independently developed this type

of intervertebral articulation, including the ante-

rior and posterior lateral zygapophyseal joints.

Fruitafossor differs from tubulidentates and

armadillos in a long list of osteological char-

acters (20). The presence of a broad meckelian

groove indicates that the middle ear bones were

still connected with the lower jaw in Fruita-

fossor. The round posterior margin of the man-

dible is different from the posteriorly positioned

angle of most placentals, including aardvarks,

sloths, and armadillos. Fruitafossor lacks the

fusion of proximal caudal vertebrae with the

sacral vertebrae, and the fusion of ischium with

the caudals that are important apomorphies of

xenarthrans. The medially placed sustentacu-

lar and astragalar facets, as well as the broad

peroneal shelf on the calcaneus, indicate that

Fruitafossor lacked the superpositional rela-

tionships of the calcaneus and astragalus of

modern placentals. No trechnotherian mammals

(including marsupials and placentals) have any

of the primitive characteristics of the forelimbs

seen in Fruitafossor.

Fig. 4. Position of Fruitafossor windsheffeli in
the phylogeny of mammaliaforms (defined by
common ancestor of Sinoconodon and crown
mammals) (3, 17) based on the strict consensus
of 184 equally parsimonious trees from a
matrix of 96 taxa and 422 morphological
characters (20) from 1000 runs of heuristic
search, with unordered multistate characters
by PAUP (version 4.0b1.0) (38). Treelength 0
2111, consistency index 0 0.381, retention
index 0 0.789. Nomenclature of major
hierarchies of mammaliaform-mammalian
clades after (7, 11, 13, 17, 18).
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We incorporated the dental and vertebral

similarities of Fruitafossor, tubulidentates, and

xenarthrans into global parsimony analysis of

morphological features known for Mesozoic

mammals and the major groups of extant mam-

mals (3, 7, 17). Fruitafossor is resolved to be a

basal mammal emerging in the Late Jurassic

mammalian diversification and has no closer

relationship to placental xenarthrans than have

other nonplacental trechnotherians (Fig. 4), and

is not a eutherian, let alone a xenarthran.

Xenarthrous intervertebral articulations help

the vertebral column resist torsion produced

by digging (35). We suggest that the open

and single-rooted tubular molars and the

xenarthrous lumbar vertebrae in Fruitafossor

are convergent features to those of some

modern placentals. So that it should not be

misconstrued, we emphasize that Fruitafossor

is not related to modern placental xenarthrans

and has no bearing on the timing of the

divergence of xenarthran placentals (36, 37).
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We compared fine-scale recombination rates at orthologous loci in humans
and chimpanzees by analyzing polymorphism data in both species. Strong
statistical evidence for hotspots of recombination was obtained in both
species. Despite È99% identity at the level of DNA sequence, however, re-
combination hotspots were found rarely (if at all) at the same positions in the
two species, and no correlation was observed in estimates of fine-scale re-
combination rates. Thus, local patterns of recombination rate have evolved
rapidly, in a manner disproportionate to the change in DNA sequence.

Recombination shapes genomic diversity,

breaking up ancestral linkage disequilibrium

(LD) and creating new combinations of alleles

on which natural selection can act. As in yeast

(1), recombination in the human genome

principally occurs at so-called Bhotspots[ of

recombination (2, 3); experimentally char-

acterized examples include the b-globin (4)

and human leukocyte antigen (HLA) regions

(5, 6). Because direct observation of recom-

bination hotspots is laborious, only with the

recent development of statistical methods to

estimate recombination rates from population

genetic (polymorphism) data (2, 3) has it be-

come practical to study fine-scale recom-

bination rates on a genomic scale.

The molecular determinants of hotspot

location and activity are largely unknown. In

yeast, chromatin structure influences initiation

of double-strand breaks (DSBs) at hotspots

(7). Directed mutagenesis of single nucleotides

can disrupt hotspot activity (8), and different

alleles of the same locus can show differences

in recombination (9–11), indicating strong se-

quence specificity. However, no sequence motif

has been identified as causing recombination

hotspots. The observation of meiotic drive at

hotspots has led to the hypothesis that hotspots
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